Resolving large‐scale pressures on species and ecosystems: propensity modelling identifies agricultural effects on streams
نویسندگان
چکیده
Although agriculture is amongst the world's most widespread land uses, studies of its effects on stream ecosystems are often limited in spatial extent. National monitoring data could extend spatial coverage and increase statistical power, but present analytical challenges where covarying environmental variables confound relationships of interest.Propensity modelling is used widely outside ecology to control for confounding variables in observational data. Here, monitoring data from over 3000 English and Welsh river reaches are used to assess the effects of intensive agricultural land cover (arable and pastoral) on stream habitat, water chemistry and invertebrates, using propensity scores to control for potential confounding factors (e.g. climate, geology). Propensity scoring effectively reduced the collinearity between land cover and potential confounding variables, reducing the potential for covariate bias in estimated treatment-response relationships compared to conventional multiple regression.Macroinvertebrate richness was significantly greater at sites with a higher proportion of improved pasture in their catchment or riparian zone, with these effects probably mediated by increased algal production from mild nutrient enrichment. In contrast, macroinvertebrate richness did not change with arable land cover, although sensitive species representation was lower under higher proportions of arable land cover, probably due to greatly elevated nutrient concentrations. Synthesis and applications. Propensity modelling has great potential to address questions about pressures on ecosystems and organisms at the large spatial extents relevant to land-use policy, where experimental approaches are not feasible and broad environmental changes often covary. Applied to the effects of agricultural land cover on stream systems, this approach identified reduced nutrient loading from arable farms as a priority for land management. On this specific issue, our data and analysis support the use of riparian or catchment-scale measures to reduce nutrient delivery to sensitive water bodies.
منابع مشابه
Modelling the effects of climate change on the distribution of Kura bleak (Alburnus filippii Kessler, 1877) on the Iranian scale
The phenomenon of climate change is the greatest environmental challenge facing in the world today. The phenomenon is expected to affect all ecosystems in the world. Freshwater ecosystems are more vulnerable to these changes, as freshwater is exposed to various human pressures such as hydrology, morphology, connectivity and water quality. Therefore, climate change along with the mentioned issue...
متن کاملModeling the effects of climate change on the distribution of Acanthalburnus urmianus (Günther, 1899) in Urmia lake basin rivers
According to the reports of the International Panel Climate Change (IPCC) there is no doubt about climate change occurring. All ecosystems on the earth have being concerned by the effects of climate change. Urmia lake basin and its rivers exposed to numerous anthropogenic stressors such as hydrological, morphological, connectivity and water quality pressures. The main objective of this study is...
متن کاملEffects of intense agricultural practices on heterotrophic processes in streams.
In developed countries, changes in agriculture practices have greatly accelerated the degradation of the landscape and the functioning of adjacent aquatic ecosystems. Such alteration can in turn impair the services provided by aquatic ecosystems, namely the decomposition of organic matter, a key process in most small streams. To study this alteration, we recorded three measures of heterotrophic...
متن کاملEffects of Urbanization on Nutrient Biogeochemistry of Aridland Streams
Land-use and land-cover change affect the biogeochemistry of stream ecosystems in numerous ways, both direct and indirect. Changes result from hydrologic modifications, including direct alterations of flow regimes and hydrologic flowpaths and indirect changes in hydrologic patterns via increased impervious cover in contributing areas of watersheds. Direct changes to channel morphology (i.e., re...
متن کاملStream habitat structure influences macroinvertebrate response to pesticides.
Agricultural pesticides continue to impair surface water ecosystems, although there are few assessments of interactions with other modifications such as fine sediment and physical alteration for flood drainage. We, therefore, surveyed pesticide contamination and macroinvertebrates in 14 streams along a gradient of expected pesticide exposure using a paired-reach approach to differentiate effect...
متن کامل